
Improving the Cosmos molecular dynamics program using
multi-timestepping techniques

Galen Reeves

Introduction

Multiple-timestepping techniques have the ability to improve the speed of a molec-
ular dynamics simulations. These techniques sample the expensive and slowly
changing long-range forces less frequently than the short-range forces. Tucker-
man and Berne have developed an integrator called reversible reference system
referencer algorithm (rRESPA) [3] based on the Trotter expansion of the Liouville
Propagator. The (rRESPA) algorithm separates the long and short range forces in
a way that is reversible, and therefore conserves energy and has some degree of
stability.

In this report, the Trotter expansion used in (rRESPA)is has been implemented into
the Cosmos molecular dynamics program [2] using the forces from the particle
mesh Ewald (PME) as the long range forces. The method created, Cosmos-Trotter,
is tested on a water-hexane system and a protein system.

Improved speed in molecular dynamics simulations will allow for the study of sys-
tems for longer time intervals. Many biological processes occur on the order of
milliseconds and the applications of the md program increase with its simulation
time.

Implementation

The Trotter expansion fits in well with the basic structure of Cosmos and is able
to use the velocity Verlet routine to iterate the system. To run cosmos-Trotter, a
short time step,

���
, and a long time step, � �

, need to specified. The value of
���

is
given by the original time step supplied in regular Cosmos, and � �

is given by the
parameter ntrott, where � �����	�
��� � ������

.

The forces are split into short-range and long-range components. The short-range
forces are determined from the straightforward calculations of all the atoms up to
a given cutoff length. The long-range forces are calculated using the particle mesh
Ewald (PME) sum.

Currently, there are several restrictions on the input parameters. On the steps where
the PME is not run, the total energy of the system cannot be calculated. Therefore,
energy statistics should be taken only on � �

steps. Also, to assure that a run fin-
ishes correctly, the total number of steps in the run be a multiple of ntrott.

The Algorithm. The program uses the velocity Verlet algorithm to propigate each
step. A regular velocity Verlet step on a system takes ��� ����� ��� ���������

and ��� �����

��� ��� �����
.

� � � ���
���
���

� � � � � ���
calculate F

� � � ���
���
���

In the Cosmos implementation of velocity Verlet, the order of the algorithm is changed
slightly to put the force calculations at the beginning of the step. The explicit im-
plementation consists of the following:

calculate F

��� ��� � � � ���
���
� ����� � ���

���
�	�

perform velocity rattle

��� ���
���
� � � ��� ��� �
� � ���

���
�	�

��� ��� ����� � ��� ��� � ��� ���
���
� �

���
���

perform position and velocity shake

Throughout a single step,
� � ��� has the same value. A step still takes ��� ����� ��� ������ �

. However, the velocities of the system are taken from ��� ������� � � � � � ����� � .
When the total energy for a given step is calculated, � � ��� from the most recent step,
and ��� ��� from the preceding step are used to describe the system at at time

�
. In

addition, this implementation requires that ��� ��� ��� � and ��� ��� are somehow obtained
for the beginning of a run. Therefore, runs usually start and end with ��� ��� ��� � and
��� ��� .
The basic trotter algorithm breaks the contributions from short-range,

��������� , and
long-range,

��� �����
forces. With � � ���	�
� � � ������

, the algorithm is:

� � � ����� ����� �
�

���
do � �! 	" � � ���	�
�

� � � ��� �������
���
�	�

� � � � � ���
calculate

� �������
� � � �����������

���
�	�

end do

calculate
��� �����

� � � ��� � ����� �
�

���

This implementation takes the system from ��� ��� � ��� � � � ���
and ��� ����� � � � �

� ���
. However, to integrate the algorithm into the structure of the cosmos code, it is

necessary to arrange the step so that the force calculations take place at the end of a
step rather than in the middle. In this description of the cosomos implementation,� � �����

is replaced by
���
��� .

do � �! 	" � � ���	�
�
clear

� � �� �
if � � � ���"

then

calculate
� �
���� � �� � � � ����� �
����	 ��

endif

calculate
��������� � � �� � �!� � �� � �
� �������

� � � ��� � �� �
���
���

perform velocity rattle

� � � ��� � �� �
���
���

� � � � � ���
perform position and velocity shake

end do

This arrangement breaks the algorithm into a part that sets up the the forces, and a
part that propagates the system using velocity Verlet. The positions of the system

go from ��� ����� ��� ��� � ���
. However, the velocities between steps are not ��� � � ��� �

because they are based on the forces � � �����	�
��� � � � ��� � � ������� � and do not correspond
to an actual time. I will call the velocity at this time ��� � � . After the first propagation
step of the algorithm the velocities are moved to � � � � . Therefore it is easy to show
how the velocities can be converted from ��� ��� ��� � , the form in which the velocities
are stored, to ��� � � , the form appropriate for the trotter algorithm. Here,

���
�
� �
�

equals the normal Verlet forces.

��� � � � ��� ��� � � � ����� �
��� � � �
���
��� �
� �������

���
�	� �

��� � � � ��� ��� �
���
�
� �
�
���
��� � � � �����	�
� �� �� � � ���

���
���

��� � � � ��� ���
���
� ��� � � �����	� ��� �� � �

� �

���
�	�

An additional startup routine is required to convert the velocities from � � � � ��� � �
��� � � by subtracting � � � �����	�
� � �� � �

���
��� ��� from ��� ��� . Also, a shutdown routine

reverts the velocities to the standard from by adding � � � � ���	�
� � �� � � ��� ��� � � to � � � � .
The Code. Few code changes are necessary to make the algorithm work with cos-
mos. One additional parameter, ntrott needs to be supplied to the program through
the input file. The routine mdfin , which adjusts the velocities at the end of a run,
is the only new routine in the program. All other changes were modifications to
existing routines. Below is a brief description of their additional functions.

getopt reads the value for ntrott from the input file.

iter8 keeps track of the step number. For a step size � �
nrgfrc is passed the value

of ntrott. For a step size
���

nrgfrc is passed the number 1.

nrgfrc calls pme only if ntrott is greater than zero.

pme calculates pme forces. If ntrott equals zero, then the pme forces from the
previous force call replace the total forces. If ntrott is greater than zero, then
the pme forces are calculated, multiplied by ntrott, and added to the total
forces.

main runs both mdstart and mdfin.

mdstart performs normal operations and, if ntrott is greater than one, subtracts
� � �����	� � �
 ��

times the velocities from the pme, from all the velocities.

mdfin is called at the end of a run. If ntrott is greater then one, all velocities are
adjusted by adding � � �����	�
��� ��

times the velocities from the pme.

Method
��� � �

drift(wat-hex) drift(protein)
Verlet 1 ����� -0.09 -0.2

2 ����� -0.08 -1.18
3 ����� -0.33 -3.34
4 ����� -0.56 -6.04
5 ����� -0.19 18.6
6 ����� 1.02
7 ����� 18.6

Trotter 1 2 -0.07 0.15
1 3 -0.09 0.08
1 4 -0.07 0.26
1 5 -0.07 0.45
1 6 -0.01 0.45
1 7 -0.06 0.60
1 8 0.05 1.21
1 9 0.00 2.11
1 10 1.44 9.36

Table 1: Comparison of energy drift per step in wat-hex and protein systems. The short-
range time step,

���
, and the long-range time step, � �

, are both fs. The energy drift, is given
in units of �	��
���������������������� .

Analysis

The performance of the cosmos-Trotter was tested with two systems: a water-hexane
system(wat-hex)consisting of 6382 water molecules and 450 hexane molecules,
and a water-protein system, (protein), consisting of 5020 water molecules and 5808
protein atoms. In all tests, the wat-hex system was run for 5 ps at 300K, and the
protein system was run for 2 ps at 310K. The systems where tested with differ-
ent different step sizes, � �

and
���

. The total energy of the system, potential plus
kinetic, is analyzed to see how stable it is throughout the run. A drift in energy
indicates that the system is not conserving energy and implies that the trajectories
can not be accurate. If the system is run a for a long time with an energy drift the
temperature of the system starts to increase. This requires the velocities to be pe-
riodically sampled from a distribution to reset the temperature. This destroys the
reversibility of the run.

Table 1 shows the energy drifts associated with the two systems. Figure 1. shows
a comparison between the Verlet and Trotter methods for the wat-hex system. The
Verlet can be expanded to a step size of about 2 fs but breaks down at longer time
steps. The Trotter is stable up to 9 fs. In the protein tests, Fig. 2, the differences
between the methods are more pronounced. Because the protein system contains
more small molecular bonds which vibrate at a high frequency (on the order of

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

E
ne

rg
y

D
rif

t

Time step for given algorithm

Verlet

Trotter

Figure 1: (wat-hex) Energy drift for step parameter. The step paramater is
���

(fs) for Ver-
let, and � �

(fs) for Trotter. The energy drift is given in ����� ��� .

-6

-4

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

D
rif

t

Time step for given algorithm

Verlet

Trotter

Figure 2: (protein) Energy drift for step parameter. The step paramater is
���

(fs) for Verlet,
and � �

(fs) for Trotter. The energy drift is given in ����� ���

fs) the Verlet method breaks down immediately. The Trotter method continues to
calculate the bond forces at 1 fs and remains quite stable for up to around � � ���
fs.

The Trotter method produced a increase in speed for both system. Fig. 3 shows the
cpu time spent per step. These times are only approximations because that the pro-
gram was not run with optimal speed settings and the conditions may vary. How-
ever, a decrease in time is shown. The wat-hex sytem goes from around 4.25 to
around 2.5 seconds/step while maintaining stability. The protein system goes from
around 5.9 to 4.2 seconds/step maintaining stability.

Additional Results

The Trotter algorithm is limited in part by the periodic oscillations that result from

2

2.5

3

3.5

4

4.5

5

5.5

6

2 4 6 8 10 12

C
P

U
 ti

m
e

Step size

protein

wat-hex

Figure 3: CPU time (seconds) per step. Note that the wat-hex system is stable to
around � � ���

and the protein system is stable to around � � � �
.

introducing “large” forces every � �
steps. If the longer time step is a multiple of

the phase of the molecular bond vibrations it will start to drive vibrations and the
simulation will fail.

One attempt to reduce this effect, an extrapolation/correction was tried on the sys-
tem. [1] Rather than include � �����	�
� 	 ��

forces every ntrott steps, the pme forces
were added every step, but only updated every ntrott steps. Since the system has
a normal sized force each step, it was hoped that the outer time step could be in-
creased without amplifying the bond occlusions. Additionally, a correction was
put on the velocities every step to attempt to reduce the error introduced. This was
a non-reversible system and the results were horrible. Even with very small step
sizes the energy took off drastically.

An additional parameter that has not been tested is the cutoff length for the short-
range forces. A cutoff length half the length of the simulation box has been sug-
gested as a good setting � and adjusting the cutoff length for a particular system
could improve the trotter results.

Furthermore, T. Schlick has suggested that stability can further be increased with
the use of a position Verlet iterator instead of the velocity Verlet iterator.

Conclusions

This report has shown that is is possible to implement the Trotter algorithm into
Cosmos with a decrease in simulation time. For both the water-hexane and the
water-protein system, the PME forces could be calculated less frequently than the
short range forces. This allows for longer, and more accurate simulations. When
running Cosmos, care must be taken to record energies only from steps with full
force calculations, and to ensure that a run ends on a full force calculation.

References

[1] E. Barth and T. Schlick. II. Extrapolation versus impulse in multiple-
timestepping schemes: Linear analysis and applications to newtonian and
langevin dynamics. J. Chem. Phys., 109:1633–1642, 1998.

[2] B. Owenson, A. Pohorille, M.A. Wilson, M.H. New, and E. Darve. COS-
MOS — A software package for COmputer Simulations of MOlecular Systems.
NASA — Ames Research Center, Moffett Field, CA 94035–1000, 1987.

[3] M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale
molecular dynamics. J. Chem. Phys., 97(3):1990–2001, 1992.

